Poincaré and Analytic Number Theory
نویسنده
چکیده
Un domaine arithmétique où l’unité semble faire absolument défaut, c’est la théorie des nombres premiers ; on n’a trouvé que des lois asymptotiques et l’on n’en doit pas espérer d’autres; mais ces lois sont isolées et l’on n’y peut parvenir que par des chemins différents qui ne semblent pas pouvoir communiquer entre eux. Je crois entrevoir d’où sortira l’unité souhaitée, mais je ne l’entrevois que vaguement ; tout se ramènera sans doute à l’étude d’une famille de fonctions transcendantes qui permettront, par l’étude de leurs points singuliers et l’application de la méthode de Darboux, de calculer asymptotiquement certaines fonctions de très grands nombres. A domain of arithmetic where unity seems completely missing, is the theory of prime numbers; only asymptotic laws have been found, and one can not hope for others; but these laws are isolated and one can only reach them by different paths which do not seem to be able to communicate. I believe I can glimpse where the desired unity will come from, but I see this only vaguely; all will probably be reduced to the study of a family of transcendental functions which will permit, through the study of their singular points and application of Darboux’s method, the asymptotic computation of certain functions of very large numbers.
منابع مشابه
Brjuno Condition and Renormalization for Poincaré Flows
In this paper we give a new proof of the local analytic linearisation of flows on T with a Brjuno rotation number, using renormalization techniques.
متن کاملRadial Index and Poincaré-hopf Index of 1-forms on Semi-analytic Sets
The radial index of a 1-form on a singular set is a generalization of the classical Poincaré-Hopf index. We consider different classes of closed singular semi-analytic sets in R that contain 0 in their singular locus and we relate the radial index of a 1-form at 0 on these sets to Poincaré-Hopf indices at 0 of vector fields defined on R.
متن کاملThe Inverse Integrating Factor and the Poincaré Map
This work is concerned with planar real analytic differential systems with an analytic inverse integrating factor defined in a neighborhood of a regular orbit. We show that the inverse integrating factor defines an ordinary differential equation for the transition map along the orbit. When the regular orbit is a limit cycle, we can determine its associated Poincaré return map in terms of the in...
متن کاملOn the Correspondence between Poincaré Symmetry of Commutative QFT and Twisted Poincaré Symmetry of Noncommutative QFT
The space-time symmetry of noncommutative quantum field theories with a deformed quantization is described by the twisted Poincaré algebra, while that of standard commutative quantum field theories is described by the Poincaré algebra. Based on the equivalence of the deformed theory with a commutative field theory, the correspondence between the twisted Poincaré symmetry of the deformed theory ...
متن کاملTwisted K-theory and Poincaré Duality
Using methods of KK-theory, we generalize Poincaré K-duality to the framework of twisted K-theory.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010